

Outline

I. Gaia

 \mathbb{X}

Ř

1

8

user requirements

II. Image analysis

algorithmic framework

III. VHDL pipeline

the logic behind the scenes

IV. The demonstrator: a case study

some solutions to some problems

V. Conclusion

Observing principle

Global astrometry survey

Ø

1

8

Gaia

- 2 telescopes with combined focal planes
- spin & precession motions
 → on-the-fly data acquisition
 → attitude & orbit control
- in 106 CCDs & L2 orbit
 → selective data acquisition
 → autonomous data management
 - survey: no star catalogue selection biases
 - \rightarrow on-board object detection

Payload

Ģ

Ŕ

Gaia ⊗

÷.

 \otimes

8

Time-delay integration (TDI)

Ø

 \mathbb{R}

1

8 8

Gaia

Some cases of interest

II. Image analysis

Functional architecture

 \otimes

Image analysis

Pre-calibration

Needs

- control the selection function
- avoid false detections
- Graceful degradation of performance in time

Method

Image analysis

- Iinear transform (generalises flat-field & dark)
- replacement mechanism
- is fixed-point arithmetics

(VIMOS CCD)

Background

- Needs
 - control the selection function: estimate the total noise
 - control false detections
- Functional
 - atency & resolution trade-off
 - robust to stellar content
 - systematic calculation
- : Method
 - regional estimates: hyperpixels
 - histograms: 4 ADU bins
 - interpolated mode: precise & robust
 - **2D bilinear interpolation**
 - fixed-point arithmetics

Background II (1)

 \otimes

Image analysis

8

Ø

- hyperpixel
- mode values

Background II (3)

 \mathbb{X}

Image analysis

Pixel selection

- Needs
 - save resources
 - \rightarrow discard background pixels
 - control false detections
 - \rightarrow robustness to noise
 - \rightarrow filter faint stars

Method

8

- signal to noise threshold
- signal: subtract estimated background
- fixed-point arithmetics

III. VHDL pipeline

- Pipeline
 - pre-calibration \rightarrow buffer_pix \rightarrow background \rightarrow pixel selection

Desian

- Gata driven & exploiting the available latency
- target slow operation (timing constraints, power consumption, resource sharing)
- Clocks
 - DCLK: data clock
 - SCLK: SRAM clock
 - CLK: main clock

- → pipeline control (~1 MHz)
- \rightarrow sequential optimisations (~32 MHz)
- → SRAM interface (125 MHz)

Design for test

- interchangeable processing core & debug core
- conditional instantiation

 \rightarrow modular for unit validation \rightarrow increasing complexity

Synthesis (1)

VHDL 8

• ESA standard (except for testing: verification & validation)

I if: Ē

 \otimes

VHDL pipeline

8

Ř

$$\overline{WE}_{LZWE}^{1} \cdot (\overline{WE}_{OHA}^{0}, (\overline{A_{OHA}^{0}, WE}^{0} + \overline{A_{OHA}^{1}, WE}^{1}, A_{AA}^{0}) + \overline{WE}_{OHA}^{1}, (\overline{A_{AA}^{1}, (WE}^{0}, WE}^{0} + \overline{WE}_{RC}^{0}, WE}^{1}) + \overline{WE}_{OHA}^{0}, (\overline{A_{AA}^{1}, (WE}^{0}, WE}^{0}, \overline{WE}^{0} + \overline{WE}_{RC}^{0}, WE}^{1}) + A_{AA}^{0}, (WE}^{0}, (\overline{A_{OHA}^{0}, HA}^{0} + A_{OHA}^{1}, (WE}^{0}, WE}^{0} + \overline{WE}_{RC}^{1}) + \overline{WE}_{RC}^{1}, A_{OHA}^{1})))))$$

II if:

$$\overline{WE}^{0}.(\overbrace{\overline{WE}_{LZWE}^{0}.A_{OHA}^{0}}^{1}+\overbrace{\overline{WE}_{OHA}^{0}.A_{OHA}^{1}}^{2\ 3\ 5\ 6})+\overline{WE}^{1}.\overline{WE}_{RC}^{1}.(\overbrace{A_{OHA}^{0}}^{28}+\overbrace{A_{AA}^{1}}^{30})$$

III if:

$$\underbrace{\overline{WE}_{RC}^{15}, \overline{WE}^{0}, A_{AA}^{1}}_{HWE_{RC}^{0}, (I)} + \underbrace{WE}_{HZWE}^{10}, (A_{AA}^{1}, \overline{WE}^{0} + A_{OHA}^{0}, \overline{WE}^{1} + A_{OHA}^{1}, \overline{WE}^{0})}_{HWE_{HZWE}^{0}, (\overline{WE}_{OHA}^{1}, \overline{WE}^{1}, A_{OHA}^{0}, \overline{WE}^{1}, A_{OHA}^{0}, \overline{WE}^{1}, \overline{WE}_{LZWE}^{1}, (\overline{A_{OHA}^{0}, \overline{WE}^{1}, \overline{WE}^{1}$$

Synthesis (2)

VHDL

• ESA standard (except for testing: verification & validation)

• Simulation

.tb/mem_module .tb/mem_module VHDL pipeline .m_module/op_r Ø _module/prev_r .m_module/op_v .m_module/prev .tb/mem_module .module/addres: .em_module/dat ..m module/data .odule/address_ .em_module/dat _module/buffer_ .m module/write .m_module/read .dule/data_buffe .odule/buffer_sta .dule/data_buffe .ule/address_bu .module/read_st/

> .ule/address_buf <u>.dule/stabi</u>lity_bu

.dule/data_buffe

 \mathbb{X}

i i				mimimin	TIMIMI			TIMITI		mumun								MUMUMUM			numumumu			THANK	
i																	j								
)																								
)									┓			⊥∟				_ l								
1				Ц									_ _					l							
0)																								
)																								
)																								
10)																								
ľ	ead_or	idle_op	<u>Įwrite_op</u>	, <mark>∥write</mark>	<u>X</u> write	<u>e <u>N</u>write</u>	<u></u> write	<u>))</u> wri	te∭write	<u></u> ∦write	<u> </u>	op	(re)(<u>), re)</u>	<u>i (</u> re.	<u>. li l</u>	e	<u>(i (re</u>	<u> Ji Jre.</u>	. <u>. </u>	<u> (ie)</u>	<u>re Xidle</u>	ор		
	ead_or	idle_op	X	write_op								<u>)idle</u>	<u>op (re</u>	ead_op	<u> </u>		_						<u></u>	e_op	
							╝└──												<u> </u>						
Ľ	J			2	13		11	12	<u></u>	10]	1	<u>_12</u>	13	1		<u></u>	12		<u>3)</u>	J			
Ľ) J	(0,0)		2	73	<u>,U</u>	11		<u>)3</u>	110				v		174.00	=	(0.0)		170.1	- V(r - 0)		V //~	~	
	23)			,	-	Va	-				Va			<u></u>	U1}	1(12)	=	{23}	<u>}{30}</u>	<u> </u>	<u>} </u>	1(23	<u>}){(3</u>	<u>U}</u>	=
	5			¶ h	╡╩┤			그러						<u>ا ا</u>	<u>لا</u>	13	10		<u>,1</u>	12	13				
	j 			μu		2_10-13		<u> </u>			3			<u> </u>			13		₽			<u> </u>			
I.																									
Ľ	,												╧												
		0			V-	Ya	10	Va	V-2	1/2	- <u>vo</u>														
	,	0	/			<u>\3</u>	10		<u>\</u> 2	13	_/0			v		V-2	=	0	v-	V-2	Y	-vo			
	, ,	0	/ /YYO	WY2	<u>/</u> 4 WY2	<u></u>	10	-11	<u>\</u> ∠	13	 				- - wo	10 10	-	U Vo Wo		<u> /∠</u> Vo					
	- 1	0		hhl<	_##				<u>\\</u> \\	<u></u>			we v		0 //2	_\/	<u>د</u>		10 112	_/0	₩∠₩∠₩				۲
	í	0	Y1	112	WO	Yn	Y1	YY2	YY2	Yo															
T	1	 	<u></u>	M2	- <u>M3</u> - W3	<u>,0</u> Yo			<u>N2</u> YY2				Y1 Y	<u>1</u> 12 1	n Y2	Yn		Ý1	Yn Y2	Yn	Ya Yo				
	, ,	0		<u> </u>	<u></u>									<u> </u>	12	-NO -W2		<u></u>	<u>NO 12</u> 112	- <u>70</u> 		112	Yn		
	3												#	<u>کہ ہے</u> ۔ ۱ ۲	2	_#≃ Y3		/// //)	///∠ ¥1				70		
	3			0.0	\neg	2-1-2	<u>+</u> >(0 34	(1)-0		3 1	<u></u>	^	· /i	F		[2			<u>/</u> 2		3	(0	\	
	1	<u> </u>		12	11/2	<u> </u>	11/2	- YY2	1112		- W2	 WO			<u> </u>					<u> </u>	<u> </u>			۰ 	
Ī	1			ис <u> </u>	- <u>me</u> 12	<u> </u>		Y1	¥2	13	Y_	WO.													
, Ti	1	0		х <u>.</u> У1	12	13	10		<u> </u>	13															
		0		n	<u>^</u>	V-2		^'	<u>^</u>		~~~~														
b	00 ps			50	1.1	1 I I	1 1	100		1 1 1	1 1	150	1 1		1 1	200		1.1	i I i		250	1 1	1	1 1	

Synthesis (3)

- VHDL
 - SA standard (except for
- Simulation
 - validated pre-synthesis &
- Synthesis

VHDL pipeline

8 8

- 14722 cells > ProASIC3E margin)
- slow routing
- target: RTAX-S 1000 (IT)

Synthesis (4)

VHDL

VHDL pipeline

- ESA standard (except for testing: verification & validation)
- Simulation
 - validated pre-synthesis & post-synthesis
- Synthesis
 - 14722 cells > ProASIC3E 600

 $\rightarrow ProASIC3E 1500$ (100% margin)

- slow routing
- target: RTAX-S 1000 (ITAR)

Architecture	Processing core						
Component	Cells	Component	Cells				
Framework	137	General	106				
Handshake manager	329	Scheduler	327				
Debug core	233	Precalibration	1844				
Processing core	11970	Buffering	210				
Controllers	2×599	Histogram	4140				
Switch	137	Mode	1533				
CLK division	35	Pixsel	3900				
Total	14722		11970				

IV. The demonstrator: a case study

Architecture

- Interfaces
 - input: CCDs via serial SpaceWire link
 - → video buffer: PC with IO board (handshake)
 - output → hard/soft interface: dual-port asynchronous SRAM
 - storage → 2 asynchronous SRAMs

Simplified

- FPGA board developments
 - \rightarrow no real-time processor
- design simplifications
 - \rightarrow no connected component labelling
 - \rightarrow no management of software interface
- inspectable design
 - \rightarrow conditional module instantiation
 - \rightarrow output data stored in PC
 - \rightarrow free pins

The demonstrator: a case study

Part

- Actel: ProASIC3E instead of RTAX-S
 - \rightarrow reprogrammable: flash-based instead of anti-fuse

Platform

- \rightarrow slower (interconnections)
- \rightarrow less dense
- Development Kit
 - ProASIC3E 600
- SRAMs

The demonstrator: a case study

- **ISSI ISI61LV51216**
- static
- asynchronous
- 16-bit data
- 19-bit address
- PC interface
 - handshake
 - 3 16-bit data

IOs: Experimental observation

- Logic
 - protocol timing failures: need to adjust timing to IO board
 - idle cycles: disrupted logic
- Analogic
 - noise
 - ø glitches
 - overshoots
 - ground noise

 \rightarrow Functional for 60% of the maximum load (16 SSOs)

Signal integrity problems

- Fast transitions (~1 ns)
 - current rush
 - harmonics
- Impedance issues

The demonstrator: a case study

- inadequate line transmission
- improper routing (common impedances, long paths)

Power supply design

- or ground reference
- ineffective decoupling
- multiple power supplies

Solutions

- IO characteristics & routing
 - Generalized of the strength reduced
 - Griver's capacitance increased
 - schmitt triggers added on inputs
 - insertion of strong quiet outputs between sensitive signals
 - delay buffers to avoid SSO

Boards modified

impedance

power supply

- \rightarrow line terminations when possible
- \rightarrow diversion of the current paths
- \rightarrow passive solutions preferred
- (terminations & level adaptation)
- \rightarrow kept one power supply only
- \rightarrow improvement of ground routing
- → decoupling capacitors
- \rightarrow use of ferrite beads

-> Functional at the maximum load (occasional perturbations)

V. Conclusion

Science

 \otimes

Conclusion

8 8 Gesigned in collaboration with scientists

Conclusion

 satisfactory: completeness, false detection rate, special objects (binary stars, textured backgrounds etc.)

Feasibility

- meets user requirements & system-level constraints (data flow)
- representative demonstrator (technology & logic): portable to RTAX
- Image: multiple clock synchronous design: data driven timing, relaxed constraints, power consumption
- test platform for testing & validation (& improvement !)

Lessons learnt

- Iogic design: resource sharing, scheduling, fixed-point arithmetics etc.
- signal integrity is a key issue (even for slow designs due to transitions)
- need for careful design of the ground reference !

Perspectives

Towards a 2nd demonstrator

improvements

 \otimes

Conclusion

Ø

- multi-layer PCB
- compact design
- power supply design
- impedances
- extensions
 - interface to software: dual-port asynchronous SRAM
 - EEPROM & initialisation
 - real-time software engine (PPC750FX)

Testing & validation

- ECSS: verification (correctness) & validation (intended use)
- compare to industrial system (Astrium SAS)

More details, discussion etc.

Poster !